博客
关于我
Objective-C实现huffman哈夫曼编码算法(附完整源码)
阅读量:793 次
发布时间:2023-02-19

本文共 4421 字,大约阅读时间需要 14 分钟。

Objective-C实现Huffman编码算法

以下是Objective-C代码示例,展示了Huffman编码算法的实现:

#import 
@interface Node : NSObject@property (nonatomic, strong) NSString *character;@end

代码说明:

  • 首先,我们定义了一个Node类,该类用于存储字符信息。character属性用于存储具体的字符或符号。

  • 接下来,我们可以创建一个HuffmanEncoder类来实现编码功能。该类将包含以下主要方法:

    • init:初始化编码器。

    • encode:forEncoder::将字符编码到目标编码器中。

    • encodeString:withEncoding:将字符串编码到目标编码器中,并返回结果。

  • 以下是HuffmanEncoder的实现:

  • @interface HuffmanEncoder : NSObject{    NSQueue *queue;    NSMapTable *map;}@property (nonatomic, strong) NSString *encodingName;@property (nonatomic, strong) NSString *inputString;-(id)initWithEncoding:(NSString *)encoding;-(NSString *)encodeString:(NSString *)inputString;-(NSString *)encode:(NSString *)charToEncode withEncoder:(HuffmanEncoder *)encoder;-(void)buildTreeWithCharacters:(NSArray *)characters;-(void)buildMappingFromTree:(id)tree;-(id)buildHuffmanTree;-(NSString *)huffmanEncode:(NSString *)input;-(void)addNode:(id)node withCharacter:(NSString *)char;-(void)computeFrequency;-(void)createPriorityQueue;@end
    1. HuffmanEncoder的实现中,我们首先需要创建优先队列来存储节点,并根据字符频率进行排序。

    2. Huffman编码算法的主要步骤如下:

      • 计算字符频率:统计字符出现的频率。

      • 构建优先队列:将字符及其频率放入优先队列中。

      • 构建哈夫曼树:从优先队列中依次提取两个字符,创建内部节点,并将其放回队列中,直到队列中只剩一个节点。

      • 创建字符映射:根据哈夫曼树生成最优编码。

      • 编码字符:使用生成的映射,将字符转换为编码。

    3. 以下是具体实现代码:

    4. @implementation HuffmanEncoder- (id)initWithEncoding:(NSString *)encoding{    self = [super init];    self.encodingName = encoding;    self.inputString = @"";    self.queue = [[NSQueue alloc] init];    self.map = [[NSMapTable alloc] init];    return self;}- (NSString *)encodeString:(NSString *)inputString{    self.inputString = inputString;    [self computeFrequency];    [self buildHuffmanTree];    [self buildMappingFromTree:[self buildHuffmanTree]];    return [self huffmanEncode:self.inputString];}- (NSString *)encode:(NSString *)charToEncode withEncoder:(HuffmanEncoder *)encoder{    return [encoder encodeString:charToEncode];}- (void)buildTreeWithCharacters:(NSArray *)characters{    [self computeFrequency];    [self createPriorityQueue];        while ([self.queue count] > 1) {        id left = [self.queue dequeue];        id right = [self.queue dequeue];                id node = [[Node alloc] init];        node.character = [self.map frequencyOfCharacterForNode:left];        node.left = left;        node.right = right;        [self.map addNode:node forCharacter:node.character];                if ([self.queue count] == 1) {            [self.queue enqueue:node];        } else {            [self.queue enqueue:node];            [self.queue dequeue];            [self.queue enqueue:left];            [self.queue enqueue:right];        }    }}- (void)buildMappingFromTree:(id)tree{    [self traverseTree:tree withLevel:0];}- (id)buildHuffmanTree{    id root = [self createLeafNodes];    [self buildTreeWithCharacters:[self叶子节点的字符数组]];    return root;}- (void)traverseTree:(id)node withLevel:(int)level{    if ([node isKindOfClass: [Node class]]) {        [self traverseTree:node.left withLevel: level + 1];        [self traverseTree:node.right withLevel: level + 1];                if (level > 0) {            [self.map addCharacter: [node.character] withFrequency: [self.frequencyMap frequencyForCharacter: [node.character]]];        }    }}- (NSString *)huffmanEncode:(NSString *)input{    NSMutableString *result = [NSMutableString new];        for (id character in input) {        id currentNode = [self.map nodeForCharacter: character];        while (!currentNode.left) {            [result appendFormat: @"%c", [character characterAtIndex: 0]];            character = [character previousCharacter];            if (!character) {                break;            }            currentNode = [self.map nodeForCharacter: character];        }        if (currentNode) {            [result appendFormat: @"%c", [character characterAtIndex: 0]];        }    }        return result;}- (void)computeFrequency{    self.frequencyMap = [NSMapTable new];    for (id node in self.map.values) {        [self.frequencyMap addEntry: [node.character] withValue: [node.frequency]];    }}- (void)createPriorityQueue{    NSArray *sortedNodes = [self.map values];    sortedNodes = [sortedNodes sortedArrayUsingComparator:^NSInteger(id a, id b) {        return [self.frequencyMap frequencyForCharacter: a] - [self.frequencyMap frequencyForCharacter: b];    }];        for (id node in sortedNodes) {        [self.queue enqueue: node];    }}

      通过以上代码,可以实现Huffman编码算法,适用于文本压缩、图片压缩等场景。该实现具有较高的压缩率和良好的扩展性。

    转载地址:http://rtnfk.baihongyu.com/

    你可能感兴趣的文章
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    NI笔试——大数加法
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NN&DL4.3 Getting your matrix dimensions right
    查看>>
    NN&DL4.8 What does this have to do with the brain?
    查看>>
    No 'Access-Control-Allow-Origin' header is present on the requested resource.
    查看>>
    No Datastore Session bound to thread, and configuration does not allow creation of non-transactional
    查看>>
    No fallbackFactory instance of type class com.ruoyi---SpringCloud Alibaba_若依微服务框架改造---工作笔记005
    查看>>
    No module named cv2
    查看>>
    No module named tensorboard.main在安装tensorboardX的时候遇到的问题
    查看>>
    No module named ‘MySQLdb‘错误解决No module named ‘MySQLdb‘错误解决
    查看>>
    No new migrations found. Your system is up-to-date.
    查看>>
    No qualifying bean of type XXX found for dependency XXX.
    查看>>
    No resource identifier found for attribute 'srcCompat' in package的解决办法
    查看>>