本文共 4421 字,大约阅读时间需要 14 分钟。
Objective-C实现Huffman编码算法
以下是Objective-C代码示例,展示了Huffman编码算法的实现:
#import@interface Node : NSObject@property (nonatomic, strong) NSString *character;@end
代码说明:
首先,我们定义了一个Node类,该类用于存储字符信息。character属性用于存储具体的字符或符号。
接下来,我们可以创建一个HuffmanEncoder类来实现编码功能。该类将包含以下主要方法:
init:初始化编码器。
encode:forEncoder::将字符编码到目标编码器中。
encodeString:withEncoding:将字符串编码到目标编码器中,并返回结果。
以下是HuffmanEncoder的实现:
@interface HuffmanEncoder : NSObject{ NSQueue *queue; NSMapTable *map;}@property (nonatomic, strong) NSString *encodingName;@property (nonatomic, strong) NSString *inputString;-(id)initWithEncoding:(NSString *)encoding;-(NSString *)encodeString:(NSString *)inputString;-(NSString *)encode:(NSString *)charToEncode withEncoder:(HuffmanEncoder *)encoder;-(void)buildTreeWithCharacters:(NSArray *)characters;-(void)buildMappingFromTree:(id)tree;-(id)buildHuffmanTree;-(NSString *)huffmanEncode:(NSString *)input;-(void)addNode:(id)node withCharacter:(NSString *)char;-(void)computeFrequency;-(void)createPriorityQueue;@end 在HuffmanEncoder的实现中,我们首先需要创建优先队列来存储节点,并根据字符频率进行排序。
Huffman编码算法的主要步骤如下:
计算字符频率:统计字符出现的频率。
构建优先队列:将字符及其频率放入优先队列中。
构建哈夫曼树:从优先队列中依次提取两个字符,创建内部节点,并将其放回队列中,直到队列中只剩一个节点。
创建字符映射:根据哈夫曼树生成最优编码。
编码字符:使用生成的映射,将字符转换为编码。
以下是具体实现代码:
@implementation HuffmanEncoder- (id)initWithEncoding:(NSString *)encoding{ self = [super init]; self.encodingName = encoding; self.inputString = @""; self.queue = [[NSQueue alloc] init]; self.map = [[NSMapTable alloc] init]; return self;}- (NSString *)encodeString:(NSString *)inputString{ self.inputString = inputString; [self computeFrequency]; [self buildHuffmanTree]; [self buildMappingFromTree:[self buildHuffmanTree]]; return [self huffmanEncode:self.inputString];}- (NSString *)encode:(NSString *)charToEncode withEncoder:(HuffmanEncoder *)encoder{ return [encoder encodeString:charToEncode];}- (void)buildTreeWithCharacters:(NSArray *)characters{ [self computeFrequency]; [self createPriorityQueue]; while ([self.queue count] > 1) { id left = [self.queue dequeue]; id right = [self.queue dequeue]; id node = [[Node alloc] init]; node.character = [self.map frequencyOfCharacterForNode:left]; node.left = left; node.right = right; [self.map addNode:node forCharacter:node.character]; if ([self.queue count] == 1) { [self.queue enqueue:node]; } else { [self.queue enqueue:node]; [self.queue dequeue]; [self.queue enqueue:left]; [self.queue enqueue:right]; } }}- (void)buildMappingFromTree:(id)tree{ [self traverseTree:tree withLevel:0];}- (id)buildHuffmanTree{ id root = [self createLeafNodes]; [self buildTreeWithCharacters:[self叶子节点的字符数组]]; return root;}- (void)traverseTree:(id)node withLevel:(int)level{ if ([node isKindOfClass: [Node class]]) { [self traverseTree:node.left withLevel: level + 1]; [self traverseTree:node.right withLevel: level + 1]; if (level > 0) { [self.map addCharacter: [node.character] withFrequency: [self.frequencyMap frequencyForCharacter: [node.character]]]; } }}- (NSString *)huffmanEncode:(NSString *)input{ NSMutableString *result = [NSMutableString new]; for (id character in input) { id currentNode = [self.map nodeForCharacter: character]; while (!currentNode.left) { [result appendFormat: @"%c", [character characterAtIndex: 0]]; character = [character previousCharacter]; if (!character) { break; } currentNode = [self.map nodeForCharacter: character]; } if (currentNode) { [result appendFormat: @"%c", [character characterAtIndex: 0]]; } } return result;}- (void)computeFrequency{ self.frequencyMap = [NSMapTable new]; for (id node in self.map.values) { [self.frequencyMap addEntry: [node.character] withValue: [node.frequency]]; }}- (void)createPriorityQueue{ NSArray *sortedNodes = [self.map values]; sortedNodes = [sortedNodes sortedArrayUsingComparator:^NSInteger(id a, id b) { return [self.frequencyMap frequencyForCharacter: a] - [self.frequencyMap frequencyForCharacter: b]; }]; for (id node in sortedNodes) { [self.queue enqueue: node]; }} 通过以上代码,可以实现Huffman编码算法,适用于文本压缩、图片压缩等场景。该实现具有较高的压缩率和良好的扩展性。
转载地址:http://rtnfk.baihongyu.com/